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Introduction

Markov random fields (undirected graphical models): central to many
applications in science and engineering:

◮ communication, coding, information theory, networking
◮ machine learning and statistics
◮ computer vision; image processing
◮ statistical physics
◮ bioinformatics, computational biology ...
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Introduction

Markov random fields (undirected graphical models): central to many
applications in science and engineering:

◮ communication, coding, information theory, networking
◮ machine learning and statistics
◮ computer vision; image processing
◮ statistical physics
◮ bioinformatics, computational biology ...

some core computational problems
◮ counting/integrating: computing marginal distributions and data

likelihoods
◮ optimization: computing most probable configurations (or top

M -configurations)
◮ model selection: fitting and selecting models on the basis of data
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What are graphical models?

Markov random field: random vector (X1, . . . ,Xp) with distribution
factoring according to a graph G = (V,E):

A B C

D

Hammersley-Clifford Theorem: (X1, . . . ,Xp) being Markov w.r.t G
implies factorization over graph cliques

studied/used in various fields: spatial statistics, language modeling,

computational biology, computer vision, statistical physics ....
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Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices
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Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

〈θst, φst(xs, xt)〉
}
.
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1

Z(θ)
exp

{ ∑
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Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . ,Xp), identify the underlying
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Graphical model selection

let G = (V,E) be an undirected graph on p = |V | vertices

pairwise Markov random field: family of prob. distributions

P(x1, . . . , xp; θ) =
1

Z(θ)
exp

{ ∑

(s,t)∈E

〈θst, φst(xs, xt)〉
}
.

Problem of graph selection: given n independent and identically
distributed (i.i.d.) samples of X = (X1, . . . ,Xp), identify the underlying
graph structure

complexity constraint: restrict to subset Gd,p of graphs with maximum
degree d
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Illustration: Voting behavior of US senators

Graphical model fit to voting records of US senators (Bannerjee, El Ghaoui, &

d’Aspremont, 2008)



Outline of remainder of talk

1 Background and past work

2 A practical scheme for graphical model selection

(a) ℓ1-regularized neighborhood regression
(b) High-dimensional analysis and phase transitions

3 Fundamental limits of graphical model selection

(a) An unorthodox channel coding problem
(b) Necessary conditions
(c) Sufficient conditions (optimal algorithms)

4 Various open questions......
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Previous/on-going work on graph selection

methods for Gaussian MRFs
◮ ℓ1-regularized neighborhood regression for Gaussian MRFs

(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao, 2006)

◮ ℓ1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,

2007; Friedman, 2008; Ravikumar et al., 2008)
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◮ approximate max. entropy approach and thinned graphical models
(Johnson et al., 2007)

◮ neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)



Previous/on-going work on graph selection

methods for Gaussian MRFs
◮ ℓ1-regularized neighborhood regression for Gaussian MRFs

(e.g., Meinshausen & Buhlmann, 2005; Wainwright, 2006, Zhao, 2006)

◮ ℓ1-regularized log-determinant (e.g., Yuan & Lin, 2006; d’Asprémont et al.,

2007; Friedman, 2008; Ravikumar et al., 2008)

methods for discrete MRFs
◮ exact solution for trees (Chow & Liu, 1967)

◮ local testing (e.g., Spirtes et al, 2000; Kalisch & Buhlmann, 2008)

◮ distribution fits by KL-divergence (Abeel et al., 2005)

◮ ℓ1-regularized logistic regression (Ravikumar, W. & Lafferty et al., 2006, 2008)

◮ approximate max. entropy approach and thinned graphical models
(Johnson et al., 2007)

◮ neighborhood-based thresholding method (Bresler, Mossel & Sly, 2008)

information-theoretic analysis
◮ pseudolikelihood and BIC criterion (Csiszar & Talata, 2006)
◮ information-theoretic limitations (Santhanam & W., 2008)



High-dimensional analysis
classical analysis: dimension p fixed, sample size n → +∞

high-dimensional analysis: allow both dimension p, sample size n, and
maximum degree d to increase at arbitrary rates

take n i.i.d. samples from MRF defined by Gp,d

study probability of success as a function of three parameters:

Success(n, p, d) = P[Method recovers graph Gp,d from n samples]

theory is non-asymptotic: explicit probabilities for finite (n, p, d)



Some challenges in distinguishing graphs

clearly, a lower bound on the minimum edge weight is required:

min
(s,t)∈E

|θ∗st| ≥ θmin,

although θmin(p, d) = o(1) is allowed.

in contrast to other testing/detection problems, large |θst| also
problematic



Some challenges in distinguishing graphs

clearly, a lower bound on the minimum edge weight is required:

min
(s,t)∈E

|θ∗st| ≥ θmin,

although θmin(p, d) = o(1) is allowed.

in contrast to other testing/detection problems, large |θst| also
problematic

Toy example: Graphs from G3,2 (i.e., p = 3; d = 2)

θ θ
θ

θ

θ

θ

As θ increases, all three Markov random fields become arbitrarily close to:

P(x1, x2, x3) =

{
1/2 if x ∈ {(−1)3, (+1)3}
0 otherwise.



Markov property and neighborhood structure

Markov properties encode neighborhood structure:

(Xs | XV \s)︸ ︷︷ ︸
d
= (Xs | XN(s))︸ ︷︷ ︸

Condition on full graph Condition on Markov blanket

N(s) = {s, t, u, v, w}

Xs

Xs
Xt

Xu

Xv

Xw

basis of pseudolikelihood method (Besag, 1974)

used for Gaussian model selection (Meinshausen & Buhlmann, 2006)
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§2. Practical method via neighborhood regression

Observation: Recovering graph G equivalent to recovering neighborhood set N(s)
for all s ∈ V .

Method: Given n i.i.d. samples {X(1), . . . , X(n)}, perform logistic regression of

each node Xs on X\s := {Xs, t 6= s} to estimate neighborhood structure bN(s).

1 For each node s ∈ V , perform ℓ1 regularized logistic regression of Xs on the
remaining variables X\s:

bθ[s] := arg min
θ∈Rp−1

(

1

n

n
X

i=1

f(θ; X
(i)

\s )
| {z }

+ ρn ‖θ‖1
|{z}

)

logistic likelihood regularization

2 Estimate the local neighborhood bN(s) as the support (non-negative entries) of

the regression vector bθ[s].

3 Combine the neighborhood estimates in a consistent manner (AND, or OR
rule).
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Empirical behavior: Unrescaled plots
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Empirical behavior: Appropriately rescaled
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Sufficient conditions for consistent model selection
graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem
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draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)

θLR(n, p, d) :=
n

d3 log p
> θcrit

and regularization parameter ρn ≥ c1 τ
√

log p
n

, then with probability greater

than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) Uniqueness: For each node s ∈ V , the ℓ1-regularized logistic convex
program has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).
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graph sequences Gp,d = (V, E) with p vertices, and maximum degree d.

edge weights |θst| ≥ θmin for all (s, t) ∈ E

draw n i.i.d, samples, and analyze prob. success indexed by (n, p, d)

Theorem

Under incoherence conditions, for a rescaled sample size (RavWaiLaf06)

θLR(n, p, d) :=
n

d3 log p
> θcrit

and regularization parameter ρn ≥ c1 τ
√

log p
n

, then with probability greater

than 1 − 2 exp
(
− c2(τ − 2) log p

)
→ 1:

(a) Uniqueness: For each node s ∈ V , the ℓ1-regularized logistic convex
program has a unique solution. (Non-trivial since p ≫ n =⇒ not strictly convex).

(b) Correct exclusion: The estimated sign neighborhood N̂(s) correctly
excludes all edges not in the true neighborhood.

(c) Correct inclusion: For θmin ≥ c3τ
√
dρn, the method selects the correct

signed neighborhood.

Consequence: For θmin = Ω(1/d), it suffices to have n = Ω(d3 log p).



Rescaled plots for 4-grid graphs
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Results for 8-grid graphs
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Assumptions

Define Fisher information matrix of logistic regression:
Q∗ := Eθ∗

[
∇2f(θ∗;X)

]
.

A1. Dependency condition: Bounded eigenspectra:

Cmin ≤ λmin(Q∗
SS), and λmax(Q∗

SS) ≤ Cmax.

λmax(Eθ∗ [XXT ]) ≤ Dmax.

A2. Incoherence There exists an ν ∈ (0, 1] such that

|||Q∗
ScS(Q∗

SS)−1|||∞,∞ ≤ 1 − ν.

where |||A|||∞,∞ := maxi

∑
j |Aij |.

bounds on eigenvalues are fairly standard

incoherence condition:

◮ partly necessary (prevention of degenerate models)
◮ partly an artifact of ℓ1-regularization

incoherence condition is weaker than correlation decay
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§3. Info. theory: Graph selection as channel coding

graphical model selection is an unorthodox channel coding problem:
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§3. Info. theory: Graph selection as channel coding

graphical model selection is an unorthodox channel coding problem:

◮ codewords/codebook: graph G in some graph class G

◮ channel use: draw sample X(i) = (X
(i)
1 , . . . , X

(i)
p ) from Markov random

field Pθ(G)

◮ decoding problem: use n samples {X(1), . . . , X(n)} to correctly distinguish
the “codeword”

X(1), . . . ,X(n)P(X | G)G
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graphical model selection is an unorthodox channel coding problem:

◮ codewords/codebook: graph G in some graph class G

◮ channel use: draw sample X(i) = (X
(i)
1 , . . . , X

(i)
p ) from Markov random

field Pθ(G)

◮ decoding problem: use n samples {X(1), . . . , X(n)} to correctly distinguish
the “codeword”

X(1), . . . ,X(n)P(X | G)G

Channel capacity for graph decoding determined by balance between

log number of models

relative distinguishability of different models
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)

128 exp(3θmin

2 )
,

log p

2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.
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Necessary conditions for Gd,p
G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:
◮ Minimum edge weight: |θ∗

st| ≥ θmin for all edges
◮ Maximum neighborhood weight: ω(θ) := max

s∈V

P

t∈N(s)

|θ∗
st|

Theorem

If the sample size n is upper bounded by (Santhanam & W, 2008)

n < max
{d

8
log

p

8d
,

exp(ω(θ)
4 ) dθmin log(pd/8)

128 exp(3θmin

2 )
,

log p

2θmin tanh(θmin)

}

then the probability of error of any algorithm over Gd,p is at least 1/2.

Interpretation:

Naive bulk effect: Arises from log cardinality log |Gd,p|
d-clique effect: Difficulty of separating models that contain a near d-clique

Small weight effect: Difficult to detect edges with small weights.
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.

Martin Wainwright (UC Berkeley) High-dimensional graph selection August 2009 20 / 27



Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.

note that maximum neighborhood weight ω(θ∗) ≥ d θmin =⇒ require
θmin = O(1/d)

Martin Wainwright (UC Berkeley) High-dimensional graph selection August 2009 20 / 27



Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
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from small weight effect

n = Ω(
log p

θmin tanh(θmin)
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( log p
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conclude that ℓ1-regularized logistic regression (LR) is within Θ(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)
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Some consequences

Corollary

For asymptotically reliable recovery over Gd,p, any algorithm requires at least
n = Ω(d2 log p) samples.

note that maximum neighborhood weight ω(θ∗) ≥ d θmin =⇒ require
θmin = O(1/d)

from small weight effect

n = Ω(
log p

θmin tanh(θmin)
) = Ω

( log p

θ2min

)

conclude that ℓ1-regularized logistic regression (LR) is within Θ(d) of
optimal for general graphs (Ravikumar., W. & Lafferty, 2006)

for bounded degree graphs:
◮ ℓ1-LR order-optimal under incoherence conditions with cost O(p4)
◮ thresholding procedure order-optimal under correlation decay, also with

polynomial complexity (Bresler, Sly & Mossel, 2008)
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Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d
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Martin Wainwright (UC Berkeley) High-dimensional graph selection August 2009 21 / 27



Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X(1), . . . ,X(n)}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

P[ψ(Xn
1 ) 6= G] ≥ 1 − I(Xn

1 ;G)

log |G| − o(1)

where I(Xn
1 ;G) is mutual information between observations Xn

1 and
randomly chosen graph G
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Proof sketch: Main ideas for necessary conditions

based on assessing difficulty of graph selection over various sub-ensembles
G ⊆ Gp,d

choose G ∈ G u.a.r., and consider multi-way hypothesis testing problem
based on the data Xn

1 = {X(1), . . . ,X(n)}

for any graph estimator ψ : Xn → G, Fano’s inequality implies that

P[ψ(Xn
1 ) 6= G] ≥ 1 − I(Xn

1 ;G)

log |G| − o(1)

where I(Xn
1 ;G) is mutual information between observations Xn

1 and
randomly chosen graph G

remaining steps:

1 Construct “difficult” sub-ensembles G ⊆ Gp,d

2 Compute or lower bound the log cardinality log |G|.

3 Upper bound the mutual information I(Xn
1 ; G).
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◮ simple counting argument: log |Gp,d| = Θ
`

pd log(p/d)
´

◮ trivial upper bound: I(Xn
1 ; G) ≤ H(Xn

1 ) ≤ np.
◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.

(2008)
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with weight θ = θmin



Two straightforward ensembles
1 Naive bulk ensemble: All graphs on p vertices with max. degree d (i.e.,

G = Gp,d)

◮ simple counting argument: log |Gp,d| = Θ
`

pd log(p/d)
´

◮ trivial upper bound: I(Xn
1 ; G) ≤ H(Xn

1 ) ≤ np.
◮ substituting into Fano yields necessary condition n = Ω(d log(p/d))
◮ this bound independently derived by different approach by Bresler et al.

(2008)

2 Small weight effect: Ensemble G consisting of graphs with a single edge
with weight θ = θmin

◮ simple counting: log |G| = log
`

p
2

´

◮ upper bound on mutual information:

I(Xn
1 ; G) ≤

1
`

p
2

´

X

(i,j),(k,ℓ)∈E

D
`

θ(Gij)‖θ(Gkℓ)
´

.

◮ upper bound on symmetrized Kullback-Leibler divergences:

D
`

θ(Gij)‖θ(Gkℓ)
´

+ D
`

θ(Gkℓ)‖θ(Gij)
´

≤ 2θmin tanh(θmin/2)

◮ substituting into Fano yields necessary condition n = Ω
`

log p
θmin tanh(θmin/2)

´



A harder d-clique ensemble
Constructive procedure:

1 Divide the vertex set V into ⌊ p
d+1⌋ groups of size d+ 1.

2 Form the base graph G by making a (d+ 1)-clique within each group.
3 Form graph Guv by deleting edge (u, v) from G.
4 Form Markov random field Pθ(Guv) by setting θst = θmin for all edges.

(a) Base graph G (b) Graph Guv (c) Graph Gst

For d ≤ p/4, we can form

|G| ≥ ⌊ p

d+ 1
⌋
(
d+ 1

2

)
= Ω(dp)

such graphs.



A key separation lemma
Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:

S(θ(Gst)‖θ(Guv)) = D
(
θ(Gst)‖θ(Guv)

)
+D

(
θ(Guv)‖θ(Gst)

)



A key separation lemma
Strategy: Upper bound the mutual information by controlling the
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A key separation lemma
Strategy: Upper bound the mutual information by controlling the
symmetrized Kullback-Leibler divergence:

S(θ(Gst)‖θ(Guv)) = D
(
θ(Gst)‖θ(Guv)

)
+D

(
θ(Guv)‖θ(Gst)

)

Lemma

For the given ensemble, the symmetrized KL divergence is upper bounded as

S(θ(Gst)‖θ(Guv)) ≤ 8dθmin exp(3θmin/2)

exp(dθmin/2)

Key consequences:

complexity controls exponentially in maximum neighborhood weight

ω(θ∗) := max
s∈V

∑

t∈N(s)

|θst|.

combining with Fano’s inequality yields the necessary condition

n >
exp(ω(θ)

4 ) dθmin log(pd/8)

128 exp(3θmin

2 )



Sufficient conditions for Gd,p

G ∈ Gd,p: graphs with p nodes and max. degree d

Ising models with:

◮ Minimum edge weight: |θ∗
st| ≥ θmin for all edges

◮ Maximum neighborhood weight: ω(θ) := max
s∈V

P

t∈N(s)

|θ∗
st|
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◮ Minimum edge weight: |θ∗
st| ≥ θmin for all edges

◮ Maximum neighborhood weight: ω(θ) := max
s∈V

P

t∈N(s)

|θ∗
st|

Theorem

There is an (exponential-time) method that succeeds if

n > max
{
d log p,

6 exp(2ω(θ))

sinh2( |θ|2 )
d log p,

8 log p

θ2min

}
.

Comments:

to avoid exponential penalty via maximum neighborhood term, require
that θmin = O(1/d)

leads to simplified lower bound n = Ω
(
max

{
log p

θ2
min

, d3 log p
})
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Summary and open questions

Practical method: ℓ1-regularized regression succeeds with sample size

n > c1 max{ d

θ2min

, d3} log p.
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Fundamental limit: any algorithm fails for sample size

n < c2 max{ 1

θ2min

, d2} log p

various open questions:
◮ determine exact capacity of problem (including d2 versus d3 and control of

constants)

◮ some extensions....
⋆ non-binary MRFs via block-structured regularization schemes
⋆ other performance metrics (e.g, (1 − δ) edges correct)

◮ broader issue: optimal trade-offs between statistical/computational
efficiency?
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